Motivic degree zero DT-invariants
(Behrend, Bryan, Szendröói)
Introduction: Recall from Bochao's taille that if X is a scheme (finite type/ \mathbb{C}), the virtual Euler characteristic of

$$
\begin{aligned}
& \text { is } \\
& X_{v i r}(X):=\sum_{k \in \mathbb{Z}} k \cdot{\underset{X}{X}}_{\substack{\text { regular } \\
\nu_{x}^{-1}(k) \\
\text { Euler } \\
\text { chacteritic }}} \\
& \text { Behrend } \\
& \text { function of } X
\end{aligned}
$$

This is sensitive to singularities,
scheme structure (important for enumerative geometry in $\operatorname{dim} \geqslant 3$).
For X a Calabi-Yau threefold, we saw that $X_{\text {ir }}\left(H_{i l} b^{n} X\right)$ is the degree zero DI invariant of X.

Can this come from something "greater" (ie. "motivic")?

If X is a \mathbb{C}-variety, a "virtual motive" of X is a class $[X]_{\text {vir }}$ in "ring of motivic weights"
such that

$$
X\left([X]_{v i r}\right)=X_{v i r}(X)
$$

(need to define for motivic weight) We will construct a virtual motive for Hill ${ }^{n} X$ for X a threefold over \mathbb{C} (not necessarily Calabi-Yau), and because of motivation above call $\left[H i l b^{n} X\right]_{\text {sir }}$ a motivic degree zero Donaldson - Thomas invariant. This will use description of
$H_{1} l b^{n} \mathbb{C}^{3}$ as a degeneracy locus, and will give motivic Göttsche-like formulas for partition functions of threefold.

What is the ring of motivic weights?
Let us first define the Grothendieck ring of varieties:
$K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ is the free abelian group on isomorphism classes of varieties over \mathbb{C} with product given by taking Cartesian products modulo scissor relations:

- if $Y \subset X$ is a closed subvariety,

$$
\begin{aligned}
{[X] } & {[Y]+[X \backslash Y] } \\
& \text { in } K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) .
\end{aligned}
$$

Some standard facts:

- if $F \rightarrow E \rightarrow B$ is a Zarisk,trivial fibration then

$$
[E]=[F] \cdot[B]
$$

(since B is a variety, can use quasicompactness to construct finite cover by trivializing open sets, then induct on \# of trivializing opens and use scissor relations cleverly)

- if X is stratified by disjoint locally closed subsets as $X=\bigsqcup_{i=1}^{n} X_{i}$ then $[X]=\sum_{i=1}^{n}\left[X_{i}\right]$
(ri
1 1. Lit romures
(follows from scissor relation pul 'cyl . an argument)
- if $f: X \rightarrow Y$ is a bijective marphism on \mathbb{C}-points then $[x]=[Y]$ (proof requires stratification property).

This last point can be used to show that $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) \cong K_{0}(S c h \mathbb{C})=K_{0}\left(S p_{\mathbb{C}}\right)$ where Sch $\mathbb{C}, S_{p_{\mathbb{C}}}$ are the categories of schemes and algebraic spaces respectively.

To get ring of motivic weights, just
define

$$
M_{\mathbb{C}}=K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)\left[1^{-\frac{1}{2}}\right]
$$

formally, where $\|=\left[A^{1}\right]$ ("Lefscluetz motive").

Computations in $\mathcal{M}_{\mathbb{C}}$ are very concrete using fibration property.
Examples:
For notation, set $[n]_{L^{\circ}}!=\left(\mathbb{L}^{n}-1\right) \cdot\left(1^{n-1}-1\right)$

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\mathbb{L}}=\left[\begin{array}{l}
n]_{\mathbb{L}}! \\
\end{array}\right.
$$

$-\quad-L$

$$
[k]_{\mathbb{L}}![n-k]_{\mathbb{L}}!
$$

$$
\text { 1) } \begin{aligned}
& {[\operatorname{L} \operatorname{Ln}(\mathbb{C})]=\mathbb{U}^{\binom{n}{2}}[n]_{\mathbb{L}} \cdot } \\
= & \left(\mathbb{L}^{n}-1\right)\left(\mathbb{L}^{n}-\mathbb{L}\right) \cdots\left(\mathbb{L}^{n}-\mathbb{L}^{n-1}\right),
\end{aligned}
$$

since can build an element of $G l_{n}$ by first choosing a nonzero column (11n-1), then choosing an independent second column $\left(\mathbb{L}^{n}-\mathbb{L}\right)$, etc.
2) $[\operatorname{Gr}(k, n)]=\left[\begin{array}{l}n \\ k\end{array}\right]_{\underline{L}}$.

Using identity $\binom{n}{2}-\binom{k}{2}-\binom{n-k}{2}$
$=k(n-k)$, equivalent to showing

$$
[G r(k, n)]=\frac{\left[G L_{n}\right]}{\|^{k(n-k)}\left[G L_{k}\right]\left[G L_{n-k}\right]}
$$

Gr (k, n) has $G L_{n}$-action, and if $\Lambda \in G r(k, n)$ is $\left\{x_{k+1}=\ldots=x_{n}=0\right\}$, then stabilizer of Λ explicitly s matrices of form

$G L_{k}$	$*_{k, n-k}$
$O_{n-k, k}$	$G L_{n-k}$

so follows from fibration property.
The following is known:
(Morriso n-Bryan, Feit-Fine) Let C_{n} denote the reduced variety of pairs of commuting matrices in $\operatorname{End}\left(\mathbb{C}^{n}\right)^{\times 2}$. Then

$$
\sum_{n \geqslant 0} \frac{\left[C_{n}\right]}{\left[G L_{n}\right]} t^{n}=
$$

$$
\begin{aligned}
& \prod_{m=1}^{\infty} \prod_{j=0}^{\infty}\left(1-\mathbb{1}^{1-j} t^{m}\right)^{-1} \\
& M_{\mathbb{C}}\left[\left(1-{\left.\left.\mathbb{L}^{n}\right)^{-1}: n \geqslant 1\right]}^{\circ} .\right.\right.
\end{aligned}
$$

Specializations of motivic classes:
Can recover lots of invariants of varieties via homomorphisms from $M_{\mathbb{C}}$ to other rings.

Del.gne's mixed Hodge structure gives E-polynomial homomorphism

$$
\begin{array}{rl}
E: M_{\mathbb{C}} & \longrightarrow \mathbb{\pi}\left[x, y,(x y)^{-\frac{1}{2}}\right] \\
p & q \leftarrow, . i, \quad, p, q, i, \ldots n \|
\end{array}
$$

X variety $\longmapsto \longmapsto \sum_{p_{1} 9} x^{p} y^{q} \sum_{i}(-1)^{i} \operatorname{dim} H^{p_{1} q}\left(H^{i}(x, Q)\right)$

$$
L^{-\frac{1}{2}} \mapsto(x y)^{-\frac{1}{2}}
$$

Specialize $x=y=-q^{1 / 2},(x y)^{1 / 2}=q^{1 / 2}$, get weight polynomial

$$
W_{:}^{0} \mu_{\mathbb{C}} \rightarrow \mathbb{L}\left[q^{ \pm \frac{1}{2}}\right]
$$

which just gives Poincare polynomial in variable $q^{\frac{1}{2}}$ for X smooth projective. Finally, setting $q^{\frac{1}{2}}=-1$ gives

Euler characteristic

$$
x: M_{\mathbb{1}} \rightarrow \mathbb{I} .
$$

Power structure for motwic weights:
A power structure on a ring R is a map

$$
\begin{aligned}
R \times(1+t R[[t]]) & \rightarrow 1+t R[[t]] \\
(m, A(t)) & \mapsto A(t)^{m}
\end{aligned}
$$

satisfying some usual exponential properties

$$
\begin{aligned}
& \left(A(t)^{0}=1, \quad A(t)^{1}=A(t), \quad A(t)^{m+n}=\right. \\
& A(t)^{m} \cdot A(t)^{n}, \text { etc...) }
\end{aligned}
$$

For $R=K_{0}\left(V_{\text {ar }}^{C}\right)$, Gusein-Zade et al constructed a power structure uniquely characterized by

$$
(1-t)^{-[x]}=\sum_{n=0}^{\infty}\left[\operatorname{sym}^{n} x\right] t^{n}
$$

for X a variety. Briefly state construction:
if $A(t)=1+\sum_{i \geqslant 1} A_{i} t^{\prime}, \quad X$ variety y,

$$
A(t)^{[x]}=1+\sum_{\alpha \text { partition }} \pi_{G_{2}}\left[\left(\prod_{i} x^{\alpha_{i}} \backslash \Delta\right) \cdot\left(\prod_{i} A_{i}^{\alpha_{i}}\right)\right] t^{|\alpha|}
$$

where α runs over all partitions of all length,
$\alpha=1^{\alpha_{1}} 2^{\alpha_{2}} 3^{\alpha_{3}} \ldots, \Delta$ is the "big diagonal" in $X^{\alpha_{i}}$ Call pts in product where some pair of factors is equal, so $X^{\alpha_{L}} \vee \Delta$ is tuples of distinct points), and $\pi_{G_{\alpha}}$ maps the input to the orbit space under the permutation action by $G_{\alpha}:=\prod_{i} S_{\alpha_{i}}$.
Can extend in straightforward way to power structure on $M_{\mathbb{C}}$.

Also have Exp map

$$
\begin{aligned}
& \text { Exp: }^{\operatorname{man}} \mu_{\mathbb{C}}[[t]] \rightarrow 1+t \mu_{\mathbb{C}}[[t]] \\
& \sum_{n=1}^{\infty}\left[A_{n}\right] t^{n} \mapsto \prod_{n=1}^{\infty}\left(1-t^{n}\right)^{-\left[A_{n}\right]}
\end{aligned}
$$

Definitions seem weird, but make sense for partition functions:

For X a variety, define

$$
\begin{aligned}
& H_{x}(t)=1+\sum_{n=1}^{\infty}\left[H_{i} \mid b^{n} x\right] t^{n}, \\
& H_{A^{d}}^{0}(t)=1+\sum_{n=1}^{\infty}\left[H_{i}\left|b_{0}^{n} A\right|^{d}\right] t^{n}
\end{aligned}
$$

โ punctual Hilbert
Then if $d=\operatorname{dim} X$, can show

$$
H_{x}(t)=H_{A^{d}}^{0}(t)^{[x]}
$$

i.e. Stratum $H, l b_{\alpha}^{n} X$ of subichemes
w / α_{i} pts of multiplicity i is motivically what it should be:
The product over i of α_{i} degree i fuzzy points $\left(\left[H_{i} b_{o}^{i} A^{d}\right]\right)$ supported at α_{i} distinct reduced points in X $\left(X^{\alpha_{i}} \backslash \Delta\right)$.

Picture: $\alpha=k^{\alpha_{k}}, H_{i} b_{\alpha}^{k \cdot \alpha_{k}} X=$

degree k point

$$
\begin{gathered}
X^{\alpha} k \vee \Delta \\
\left(\bmod S_{\alpha_{k}}\right)
\end{gathered}
$$

$\overline{\left(\mathbb{C}^{3}\right)^{[r]]}}$ as a degeneracy locus
Theorem: $H_{1} l b^{n} \mathbb{C}^{3}$ can be described as the degeneracy locus $\left\{d f_{n}=0\right\}$ for some regular map $f_{n}: M_{n} \rightarrow \mathbb{C}$ where M_{n} is a smooth ambient variety.

Proof: We claim that $H_{1} 1 b^{n} \mathbb{C}^{3}$ has the following expliat description:

$$
\left\{(A, B, C, v) \left\lvert\, \begin{array}{l}
A, B, C \in \operatorname{End}\left(\mathbb{C}^{n}\right) \\
v \in \mathbb{C}^{n}, \\
{[A, B]=[A C]=[B, C]=0,}
\end{array}\right.\right.
$$

\checkmark should span \mathbb{C}^{n} under $\}$ polynomial action of A, B, C)

$$
\begin{aligned}
& / G L_{n}(\mathbb{C}) \\
& g \cdot(A, B, C, v)=\left(g A g^{-1}, g B g^{-1}, g C g^{-1},\right.
\end{aligned}
$$

What's the identification?
Points of Hill \mathbb{C}^{3} are just ideals

$$
\begin{aligned}
& I \in \mathbb{C}[x, y, z] \text { st. } \\
& \quad \operatorname{dim}_{\mathbb{C}}(\mathbb{C}[x, y, z] / I)=n .
\end{aligned}
$$

Given such an I', first identify $\mathbb{C}[x, y, z] / \underline{\underline{n}} \mathbb{C}^{n}$ (then \bmod out by $G L_{n}(\mathbb{C})$ action to make canonical) and construct (A, B, C, v) as follows:

$$
\begin{aligned}
& A, B, C:={ }^{\text {respectively }} x_{0}, 1 \\
& y_{z_{0}},
\end{aligned}
$$

Conversely, given (A, B, C, v), recover $I 』 \mathbb{C}[x, y, z]$ as:

$$
\operatorname{ker}(\mathbb{C}[x, y, z] \ni f \mapsto f(A, B, C) v)
$$

Can convince self that these two maps are well-defined and mutually inverse, so have set-theoretic equality (on \mathbb{C}-points). How to show scheme structure?

Just check functor of points explicitly $C_{1 . e}$ functor $\mathcal{H} \cdot b^{n} \mathbb{C}^{3}$ is represented by the set, we will show later that set has scheme structure).

Call set H, then have flat family $\mathrm{H} \rightarrow \mathrm{H}$ of O -dimensional subschemes of \mathbb{C}^{3} given by associating to $(A, B, C, v) \in H$

$$
\operatorname{ker}(k[x, y, z] \ni f \mapsto f(A, B, C) v) \text {. }
$$

To check representability, suppose
$\pi: Z \rightarrow U$ is flat family of O-dimensional length n subschemes of \mathbb{C}^{3}. If $U=U_{\lambda}$ is open cover trivializing $\pi_{*} \theta_{z}$, can use
multiplication by x, y, z to define $\operatorname{maps} U_{\lambda} \rightarrow \tilde{H} \quad\left(\begin{array}{l}H \\ w / \sigma\end{array} G_{n}(Q)\right)$, and these glue when modding out by $G L_{n}(\mathbb{C})$ since the trivializations of $\pi_{*} \sigma_{z}$ on individual U_{x} are related by $G L_{n}(\mathbb{C})$, so passes to global unique (need to check) $\operatorname{map} \phi: U \rightarrow H \quad$ st.
$\phi^{*} H=Z$, so H represents the functor and hence is

Hill \mathbb{C}^{3} if H is a scheme (which we will show). Nakajima has details of representability proof for \mathbb{C}^{2}.

Embedding of Hill ${ }^{n} \mathbb{C}^{3}$ as critical locus:

Want to construct smooth variety M_{n} and regular $\operatorname{map} f_{n}: M_{n} \rightarrow \mathbb{C}$ set. $H=\left\{d f_{n}=0\right\}$. This will give scheme structure of H and hence also prove that
$H=H_{i} l b^{n} \mathbb{C}^{3}$ as schemes.
Set $u_{n} \subseteq$ End $\left(\mathbb{C}^{n}\right)^{\oplus 3} \oplus \mathbb{C}^{n}$ to be the subset of (A, B, C, v) such that v spans \mathbb{C}^{n} under iterated action by A, B, C. This is an open stability condition: can be rewritten as " (A, B, C, v) sit. there does not exist a proper subspace $S \subseteq \mathbb{C}^{n}$ st $T S \subset S$ and
$v \in S$ for any of $T=A, B, C^{\prime \prime}$. Thus U_{n} is an open subset of an affine space. If have $\operatorname{G} \ln (\mathbb{C}) \curvearrowright \operatorname{End}\left(\mathbb{C}^{n}\right)^{\oplus 3} \oplus \mathbb{C}^{n}$ in usual way then U_{n} is set of GIT stable points for this action linearized by character

$$
\begin{array}{r}
X: \operatorname{cln}_{n}(\mathbb{C}) \rightarrow \mathbb{C}^{x} \\
g \mapsto \operatorname{det}(g)
\end{array}
$$

(can check explicitly via $1-P S$).

Stability condition implies action of $\operatorname{GL}_{n}(\mathbb{C})$ on U_{n} is Free, so GIT quotient

$$
M_{n}:=U_{n} / G L_{n}(\mathbb{C})
$$

is smooth quasiprojective variety.
H is cut out by the additional equations $[A, B]=[A, C]=[B, C]=0$ (equations are conjugation - equivariant). Define $\tilde{f}_{n}: U_{n} \rightarrow \mathbb{C}$

$$
(A, B, C, v) \mapsto \operatorname{Tr}([A, B] C)
$$

This map is congugation-invariant, so descends to regular map

$$
f_{n}: M_{n} \rightarrow \mathbb{C} .
$$

Working explicitly in coordinates shows that $d f_{n}=0$ if and only if

$$
[A, B]=[A, C]=[B, C]=0:
$$

Expliatly,

$$
\operatorname{Tr}([A, B] C)=\sum_{i, k} \sum_{j}\left(A_{1 j} B_{j k}-B_{i j} A_{j k}\right) C_{k .}
$$

so

$$
\partial_{C_{1, i}} \operatorname{Tr}([A, B] C)=\sum_{i} A_{i j} B_{j k}-B_{i j} A_{j k},
$$

the $(i, k)^{\text {th }}$ entry in $[A, B]$, so that

$$
d f_{n}=0 \Rightarrow[A, B]=0
$$

Index-juggling show r the same for $\partial_{A_{i j}}, \partial_{B_{i j}}$, so that $d f_{n}=0$ implies commutation and conversely.

This concludes the proof.
(What fails for \mathbb{C}^{4} and higher?)

Virtual motive of $H_{i l} b^{n} \mathbb{C}^{3}$

Given a regular map $f: M \rightarrow \mathbb{C}$ with M quasiprojective satisfying certain torus-equivanance properties, can use motivic integration (whatever that means...) to define absolute motivic vanishing cycle of f and show it can be computed as

$$
\left[\varphi_{f}\right]=\left[\underset{\substack{\text { I }}}{\left[f^{-1}(1)\right]} \underset{\substack{\text { generic } \\ \text { fiber }}}{\left[f^{-1}(0)\right] \in M_{\mathbb{C}} \cdot} \underset{\substack{\text { central } \\ \text { fiber }}}{[}\right.
$$

Suppose $t=\{d f=0\} \subset X$, and set

$$
[z]_{\text {vii }}=\|^{-\frac{\operatorname{dim} x}{2}}[\varphi f] \cdot B y
$$

computing fibrewise Euler characteristics in terms of Milnor fibres, can show that

$$
X\left([z]_{v i r}\right)=X_{v i r}(Z)
$$

(All of this is not easy and relies on lots of other work on motivic integration, arc spaces).
Upshot: For $Z=\{d f=0\}$ a moduli space of sheaves on a CalabiYou threefold (call f superepotential or global (hern-Simons functional), the associated DT invariant is $X_{\text {vir }}(Z)$, so $[Z]_{\text {vi }}$ is motivic DT invariant.

For $Z=H_{i l} b^{n} \mathbb{C}^{3}$ we've already explicitly computed super-potential, so use this to explicitly compute $\left[H_{i l} b^{n} \mathbb{C}^{3}\right]_{\text {vir }}$ We already know $\left[H_{i} l b^{n} \mathbb{C}^{3}\right]_{\text {vir }}$ exists, and some arguments show that classes $\left[H_{i l} b_{\alpha}^{n} \mathbb{C}^{3}\right]_{\text {vir }}$ for every partition α of n such that

$$
\left[H_{i l} l b^{n} \mathbb{C}^{3}\right]_{v i r}=\sum_{\alpha \vdash n}\left[H_{i} l b_{\alpha}^{n} \mathbb{C}^{3}\right]_{\text {vir }}
$$

Theorem: Let $Z_{\mathbb{C}^{3}}(t)$ be the (motivic)
partition function $Z_{\mathbb{C}^{3}}(t)=\sum_{n \geqslant 0}\left[H_{i} b^{n} \mathbb{C}_{\text {dir }}\right]_{\text {v ir }} t^{n}$. Then $Z_{\mathbb{C}^{3}}(t)=\prod^{\infty} \prod^{m-1}\left(1-\mathbb{U}^{2+k-m / 2} t^{m}\right)^{-1}$.
$m=1 \quad k=0$
Proof seth: Set

$$
\begin{aligned}
Y_{n}= & \{(A, B, C, v) \mid \operatorname{Tr}([A, B] C)=0\} \\
Z_{n}= & \{(A, B, C, v) \mid \operatorname{Tr}([A, B] C)=1\} \\
& C E_{n d}\left(C^{n}\right)^{\times 3} \times \mathbb{C}^{n} .
\end{aligned}
$$

We have an isomorphism

$$
\begin{aligned}
& \left(E_{n d}\left(\mathbb{C}^{n}\right)^{\times 3} \times \mathbb{C}^{n}\right) \vee Y_{n} \cong \mathbb{C}^{*} \times Z_{n} \\
& \text { via }(A, B, C, v) \mapsto\left(\operatorname{Tr}([A, B] C), \frac{A}{\operatorname{Tr}_{r}([A, B] C)}, B, C\right) .
\end{aligned}
$$

By scissor relations, this implies

$$
(1-\mathbb{U})\left(\left[Y_{n}\right]-\left[Z_{n}\right]\right)=\mathbb{1}^{3 n^{2}+n}-\mathbb{L}\left[Y_{n}\right] .
$$

Set $Y_{n}=Y_{n}^{\prime} \cup Y_{n}^{\prime \prime}$ where Y_{n}^{1} is locus where $[A, B]=0$ and $Y_{n}^{\prime \prime}$ is complement. Set C_{n} to be variety of pairs of commenting matrices in End $\left(\mathbb{Q}^{n}\right)$. Get projections $\quad Y_{n}^{\prime} \rightarrow C_{n}$

$$
Y_{n}^{\prime \prime} \rightarrow\left\{\mathbb{C}^{2 n^{2}} \backslash C_{n}\right\}
$$

with simple $\sqrt{\text { (affine) }}$ fibers, analyze to get relation $\omega_{n}=\mathbb{1}^{n(n+1)}\left[C_{n}\right]$, where $\omega_{n}=\left[Y_{n}\right]-\left[Z_{n}\right]$.

To add stability condition, define the (A, B, C)-span of $v \in \mathbb{C}^{n}$
for $A, B, C \in \operatorname{End}\left(\mathbb{C}^{n}\right)$ to be orbit of v under $\mathbb{C}[x, y, z]$ acting via A, B, C. This is a linear subspace, so set

$$
\begin{aligned}
& X_{n}^{k}=\left\{(A, B, C, v\} \mid \operatorname{dim}_{C}(A, B, C)-\operatorname{spand} d=k\right\}, \\
& Y_{n}^{k}=Y_{n} \cap X_{n}^{k} \\
& Z_{n}^{k}=Z_{n} \cap X_{n}^{k} .
\end{aligned}
$$

Ultimate goal is $\left[Y_{n}^{n}\right]-\left[Z_{n}^{n}\right]$.
Have fibration $Y_{n}^{k} \rightarrow \operatorname{Gr}(k, n)$ sending (A, B, C, v) to (A, B, C)-span $\& v$. Linear algebra and fibration/scissor
relations \checkmark give

$$
\begin{aligned}
\omega_{n}^{k} & :=\left[y_{n}^{k}\right]-\left[Z_{n}^{k}\right] \\
& =\|^{(n-k)(n+2 k)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\mathbb{L}}\left[C_{n-k}\right] \omega_{k}^{k} .
\end{aligned}
$$

Since $\omega_{n}^{n}=\omega_{n}-\sum_{k=0}^{n-1} \omega_{n}^{k}$ by stratification,
use formulas to get

$$
\begin{aligned}
& \omega_{n}^{n}=\underline{U}^{n(n+1)}\left[C_{n}\right]-\sum_{k=0}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\mathbb{L}} \mathbb{L}^{(n-k)(n+2 k)}\left[C_{n-1}\right] \omega_{k}^{k} \cdot \\
& \text { Since }\left[\varphi_{f_{n}}\right]=\left[f_{n}^{-1}(1)\right]-\left[f_{n}^{-1}(0)\right] \\
& =\frac{\left[Z_{n}^{n}\right]}{\left[G L_{n}\right]}-\frac{\left.Y_{n}^{n}\right]}{\left[G L_{n}\right]}
\end{aligned}
$$

$$
=\frac{-\omega_{n}^{n}}{\mathbb{L}^{\binom{n}{2}}[n]_{\mathbb{1}}!}
$$

we've basically computed $\left[H_{1} \|^{n} \mathbb{C}^{3}\right]_{\text {vir }}$ in terns of $\left[C_{n}\right]$, which we know by Feit-Fine. Some algebra of above relations and putting into generating series gives

$$
C\left(t \mathbb{L}^{1 / 2}\right)=Z_{\mathbb{C}^{3}(t)} C\left(t \mathbb{L}^{-1 / 2}\right)
$$

where $C(t)=\sum_{n \geqslant 0} \frac{\left[C_{n}\right]}{\left[G L_{n}\right]} t^{n}$.

Solving for $Z_{\mathbb{C}^{3}}(t)$ and using
Feit-Fine formula gives

$$
Z_{\mathbb{C}^{3}}(t)=\prod_{m=1}^{\infty} \prod_{k=0}^{m-1}\left(1-\mathbb{1}^{2+k-m / 2} t^{m}\right)^{-1}
$$

as desired.
Fun fact: setting $\mathbb{L}^{\frac{1}{2}}=-1$ in $Z_{\mathbb{C}^{3}}(t)$ recovers the Mac Marlon function for 3d-partitions, which we should expect.

Recall that we defined power structure on $M_{\mathbb{C}}$, defined in a way that

$$
\begin{aligned}
& \left(\sum_{n \geqslant 0}\left[H_{i} l b_{0}^{n} A^{\operatorname{dim} x}\right] t^{n}\right)^{[X]} \\
& =\sum_{n \geqslant 0}\left[H_{i} l b^{n} X\right] t^{n}
\end{aligned}
$$

Since $X: M_{\mathbb{C}} \rightarrow \mathbb{Z}$ is a homomorphism and the power structure is defined in terms of + and $w /\left[H_{1} l b_{o}^{n} A^{d}\right]$, can replace classes w/motivic virtual classes, so for X a threefold,

$$
\begin{aligned}
Z_{x}(t) & =\sum_{n \geqslant 0}\left[\text { Hill } b^{n} x\right]_{\text {vire }} t^{n} \\
& =Z_{\mathbb{C}_{10}^{3}}(t)^{[x]}
\end{aligned}
$$

Trick: know $Z_{\mathbb{C}^{3}(t)}$, set $X=\mathbb{C}^{3}$ in above to get

$$
z_{\mathbb{C}^{3}}(t)=z_{\mathbb{C}^{3}, 0}(t)^{\left[\mathbb{C}^{3}\right]} .
$$

Solve for $Z_{\mathbb{C}^{3}, 0}(t)$, and then compute formula for $Z_{X}(t)=Z_{\mathbb{C}^{3}, 0}(t)^{[x]}$.

$$
\begin{aligned}
& \text { Theorem: If } \operatorname{dim} X=3, \\
& \left.Z_{x}(t)=\operatorname{Exp}^{\left(1-1^{\frac{1}{2}} t\right)\left(1-\|^{-\frac{1}{2}} t\right)}\right)
\end{aligned}
$$

This can be rewritten in a way that depends on dim X and gives the correct partition functions for $\operatorname{dim} X=0,1,2$ (don't need virtual class since smooth).

Weird facts: This formula that depends on $\operatorname{dim} X$ computes correct virtual class of $\left[H_{1} b^{n} X\right]$ for $n \leqslant 3$ in all dimensions.

Up to a sign, X of the partition function for $\operatorname{dim} X=d$ gives Mac Mahon's conjecture for \# of d-dimensional partitions (expected by localization), but this conjecture is known to be only asymptotically correct.

Goitsche-like formula:
Let $M_{\delta}\left(t, q^{\frac{1}{2}}\right)=\prod_{m=1}^{\infty} \prod_{k=0}^{m-1}\left(1-q^{\delta+\frac{1}{2}+k-\frac{m}{2}} t^{m}\right)^{-1}$
("refined Mac Mahon function"), then
applying W-polynomial homomorphism to partition function $Z_{x}(t) \quad(\operatorname{dim} X=3)$ gives

$$
W Z_{x}(t)=\prod_{d=0}^{G} M_{\frac{d-3}{2}}\left(-t_{1}-q^{\frac{1}{2}}\right)^{(-1)^{d} b_{d}}
$$

for X smooth projective threefold.

